A New Uncertainty-Bearing Floating-Point Arithmetic
نویسنده
چکیده
A new deterministic floating-point arithmetic called precision arithmetic is developed to track precision for arithmetic calculations. It uses a novel rounding scheme to avoid the excessive rounding error propagation of conventional floating-point arithmetic. Unlike interval arithmetic, its uncertainty tracking is based on statistics and the central limit theorem, with a much tighter bounding range. Its stable rounding error distribution is approximated by a truncated Gaussian distribution. Generic standards and systematic methods for comparing uncertainty-bearing arithmetics are discussed. The precision arithmetic is found to be superior to interval arithmetic in both uncertainty-tracking and uncertainty-bounding for normal usages. The arithmetic code is published at: http://precisionarithm.sourceforge.net .
منابع مشابه
Precision Arithmetic: A New Floating-Point Arithmetic
A new deterministic floating-point arithmetic called precision arithmetic is developed to track precision for arithmetic calculations. It uses a novel rounding scheme to avoid the excessive rounding error propagation of conventional floating-point arithmetic. Unlike interval arithmetic, its uncertainty tracking is based on statistics and the central limit theorem, with a much tighter bounding r...
متن کاملOptimal Controller and Filter Realisations using Finite-precision, Floating-point Arithmetic
The problem of reducing the fragility of digital controllers and filters implemented using finite-precision, floating-point arithmetic is considered. Floating-point arithmetic parameter uncertainty is multiplicative, unlike parameter uncertainty resulting from fixedpoint arithmetic. Based on first-order eigenvalue sensitivity analysis, an upper bound on the eigenvalue perturbations is derived. ...
متن کاملDynamical Control of Computations Using the Family of Optimal Two-point Methods to Solve Nonlinear Equations
One of the considerable discussions for solving the nonlinear equations is to find the optimal iteration, and to use a proper termination criterion which is able to obtain a high accuracy for the numerical solution. In this paper, for a certain class of the family of optimal two-point methods, we propose a new scheme based on the stochastic arithmetic to find the optimal number of iterations in...
متن کاملError-free transformations in real and complex floating point arithmetic
Error-free transformation is a concept that makes it possible to compute accurate results within a floating point arithmetic. Up to now, it has only be studied for real floating point arithmetic. In this short note, we recall the known error-free transformations for real arithmetic and we propose some new error-free transformations for complex floating point arithmetic. This will make it possib...
متن کاملStochastic Arithmetic in Multiprecision
Floating-point arithmetic precision is limited in length the IEEE single (respectively double) precision format is 32-bit (respectively 64-bit) long. Extended precision formats can be up to 128-bit long. However some problems require a longer floating-point format, because of round-off errors. Such problems are usually solved in arbitrary precision, but round-off errors still occur and must be ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Reliable Computing
دوره 16 شماره
صفحات -
تاریخ انتشار 2012