A New Uncertainty-Bearing Floating-Point Arithmetic

نویسنده

  • Chengpu Wang
چکیده

A new deterministic floating-point arithmetic called precision arithmetic is developed to track precision for arithmetic calculations. It uses a novel rounding scheme to avoid the excessive rounding error propagation of conventional floating-point arithmetic. Unlike interval arithmetic, its uncertainty tracking is based on statistics and the central limit theorem, with a much tighter bounding range. Its stable rounding error distribution is approximated by a truncated Gaussian distribution. Generic standards and systematic methods for comparing uncertainty-bearing arithmetics are discussed. The precision arithmetic is found to be superior to interval arithmetic in both uncertainty-tracking and uncertainty-bounding for normal usages. The arithmetic code is published at: http://precisionarithm.sourceforge.net .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Precision Arithmetic: A New Floating-Point Arithmetic

A new deterministic floating-point arithmetic called precision arithmetic is developed to track precision for arithmetic calculations. It uses a novel rounding scheme to avoid the excessive rounding error propagation of conventional floating-point arithmetic. Unlike interval arithmetic, its uncertainty tracking is based on statistics and the central limit theorem, with a much tighter bounding r...

متن کامل

Optimal Controller and Filter Realisations using Finite-precision, Floating-point Arithmetic

The problem of reducing the fragility of digital controllers and filters implemented using finite-precision, floating-point arithmetic is considered. Floating-point arithmetic parameter uncertainty is multiplicative, unlike parameter uncertainty resulting from fixedpoint arithmetic. Based on first-order eigenvalue sensitivity analysis, an upper bound on the eigenvalue perturbations is derived. ...

متن کامل

Dynamical ‎C‎ontrol of Computations Using the Family of Optimal Two-point Methods to Solve Nonlinear ‎Equations

One of the considerable discussions for solving the nonlinear equations is to find the optimal iteration, and to use a proper termination criterion which is able to obtain a high accuracy for the numerical solution. In this paper, for a certain class of the family of optimal two-point methods, we propose a new scheme based on the stochastic arithmetic to find the optimal number of iterations in...

متن کامل

Error-free transformations in real and complex floating point arithmetic

Error-free transformation is a concept that makes it possible to compute accurate results within a floating point arithmetic. Up to now, it has only be studied for real floating point arithmetic. In this short note, we recall the known error-free transformations for real arithmetic and we propose some new error-free transformations for complex floating point arithmetic. This will make it possib...

متن کامل

Stochastic Arithmetic in Multiprecision

Floating-point arithmetic precision is limited in length the IEEE single (respectively double) precision format is 32-bit (respectively 64-bit) long. Extended precision formats can be up to 128-bit long. However some problems require a longer floating-point format, because of round-off errors. Such problems are usually solved in arbitrary precision, but round-off errors still occur and must be ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Reliable Computing

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2012